US 2021/0097061 Al

HIGH FREQUENCY DATA MANAGEMENT
(HFDM)

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit under 35 U.S.C.
Section 119(e) of the following co-pending and commonly-
assigned U.S. provisional patent application(s), which is/are
incorporated by reference herein:

[0002] Provisional Application Ser. No. 62/907,173, filed
on Sep. 27, 2019, with inventor(s) Dov Amihod, Thiago da
Costa, Arno Zinke, Sebastian Medan, Farzad Towhidi, and
Roland Artur Ruiters-Christou, entitled “High Frequency
Data Model (HFDM),” attorneys’ docket number 30566.
0584USP1.

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0003] The present invention relates generally to collab-
orative design, and in particular, to a method, apparatus,
system, and article of manufacture for a high frequency data
management system that solves latency and user workflow
issues.

2. Description of the Related Art

[0004] (Note: This application references a number of
different publications as indicated throughout the specifica-
tion by reference numbers enclosed in brackets, e.g., [x]. A
list of these different publications ordered according to these
reference numbers can be found below in the section entitled
“References.” Each of these publications is incorporated by
reference herein.)

[0005] Collaborative design is becoming a bigger area and
accepted workflow. The number of users on any one project
can expand very quickly and result in changes and forks, that
can slow performance and complicate the workflow. Prior
art collaborative systems fail to store data in an efficient,
fast, and accessible manner that can be utilized by multiple
users in a collaborative system. More specifically, it is
desirable to store data in a manner that is performed in an
automated manner, that is efficient and processed quickly
both across a network and locally, with simultaneous access
to collaborating users, where version history and reversion
are available. To better understand these problems, a
description of prior art data management systems and their
limitations may be useful.

[0006] Various types of applications (e.g., content creation
applications) impose demanding requirements on their data
infrastructure. Data grows larger over the lifetime of assets,
projects and companies. There are intense sharing/collab-
orative challenges, with very high-expectations with regards
to low latency, real-time feedback, data-availability and
durability. Further, many people simply don’t know they
have a problem with keeping history for the content they
generate. Specifically, many types of applications require the
history of data to be preserved—for example financial
applications, document management applications or content
creation applications. The most challenging applications to
build are modern content creation applications in the web.
Users expect their work to be always saved, and that it can
be reverted to earlier versions. Users may go offline for
periods of time and need to reconcile multiple versions of

Apr. 1,2021

documents—by multiple collaborators. They also expect
real-time collaborative editing, like in GOOGLE DOCS, and
an interactive application that quickly reacts to changes.
[0007] Such a requirement of historical data imposes high
demands on the data infrastructure of such applications. For
example, a distributed system may have several distributed
nodes that have to be synchronized—sometimes in real time,
sometimes after long periods of time. Such a system must
cope with a high rate of data changes (at the speed of key
presses or mouse movements), and needs to support rich
data-models such as the ones needed for web-page editors,
CAD applications or document editors. In addition, such
systems may have to cope with large amounts of data and
provide high availability and durability.

[0008] To realize such applications, it would be useful to
have a system that allows the following functionality to be
realized at the same time: a) complete change history, b)
client-level state while globally eventually consistent, c¢)
branching & merging of change histories, d) random access
to all data, e) efficient access to the state of all data at any
point in history.

[0009] Many products that create content have their data-
backends designed without knowledge of these problems/
design requirements. Most products approach data manage-
ment for content as a virtual file system. This approach kicks
off a chain of future problems and limitations with regards
to management of user generated content in the presence of
concurrent editing. Please note that this includes not only
multi-user collaboration use cases but also scenarios where
services produce or consume data, particularly in the context
of a distributed computer.

[0010] There are several systems that implement a subset
of the requirements defined above. For example, AWS
APPSYNC [4], SHARE.JS [5] AND GOOGLE CLOUD
FIRESTORE [6] implement a distributed system with a
local state and conflict resolution logic to handle competing
writes, but they don’t provide complete change history with
branching. On the other hand, there are systems that provide
full version history with branching on complex data-struc-
tures, for example for SQL databases [7] or XML documents
[8], but which are not implemented as distributed systems.
[0011] Prior art systems may provide a class of distributed
data storage systems that make history their primary concern
(GIT [1] and BLOCKCHAIN). However, such change-
based systems operate on the basis of storing data-changes.
[0012] One may also note that the above described
requirements seem to be interdependent. Change-based data
systems seem to suffer from the same set of challenges—for
example random data access is difficult while encoding
history—which warrants studying these systems as a class of
systems. Achieving one requirement does not guarantee one
can achieve the next requirement.

[0013] More specifically, GIT [1] provides a distributed
revision control system, that uses local states on the clients
and uses branching and merging/rebasing to achieve even-
tual consistency. However, GI'T’s main use case is version-
ing of source code. It therefore manages a folder tree, instead
of' a more fine-grained document model of embodiments of
the present invention. Further, GIT focuses on the low
frequency use cases, in which usually only a few synchro-
nizations per day happen, instead of constantly keeping
multiple nodes in sync.

[0014] TARDIS [2] also follows an approach where clients
have a local state and branches. Conflicts are resolved via



